Measurements of Azimuthal Flow in BES Au+Au Collisions at RHIC by STAR

Liao Song for the STAR collaboration

University of Houston

Presentation outline

- ► Introduction to Beam Energy Scan(BES) program
- ► The ridge
- ► Analysis details
- Conclusions

About the BES program

In 2010 and 2011 RHIC completed phase I of the BES program with data sets at 7.7, 11.5, 19.6, 27 and 39 GeV. Goals of the BES program:

- Determine at which energy key QGP signatures turn off.
- Search for the critical point.

The QCD phase diagram

The Ridge: Evidence of deconfinement?

STAR ridge (Phys. Rev. C80 (2009) 064912)

p+Pb di-hadron correlations (Phys. Lett. B 718 (2013) 795)

▶ What happens at lower energies?

Correlation function

The correlation function we extract is:

$$C(\Delta\phi, \Delta\eta) = rac{ extstyle N_{mixed}}{ extstyle N_{same}} imes rac{ extstyle N_{same}(\Delta\phi, \Delta\eta)}{ extstyle N_{mixed}(\Delta\phi, \Delta\eta)}$$

two-particle Fourier coefficients:

$$v_n\{2\}^2 = \sum_i C_i cos(n\Delta\phi_i) / \sum_i C_i$$

Data sets and event/track selections

Au+Au collisions

center of mass energy

center of mass energy	
energy(GeV)	pvz cut(cm)
7.7	±70
11.5	±50
19.6	±40
27	±40
39	±40
.	

track cuts:

- ▶ $|\eta| < 1$;
- $0.2 < p_T < 2 \text{GeV/c}$;
- number of TPC hits> 15.

the STAR detector

AuAu $\sqrt{s_{NN}}=7.7$ GeV $\Delta\phi\Delta\eta$ vs centrality

► Ridge persists down to the lowest energies;

▶ Strong away-side correlations.

AuAu $\sqrt{s_{NN}}=19.6$ GeV $\Delta\phi\Delta\eta$ vs centrality

➤ Ridge becomes stronger.

AuAu $\sqrt{s_{NN}}=27$ GeV $\Delta\phi\Delta\eta$ vs centrality

► Correlations look similar to 19.6 GeV.

$v_2\{2\}$ vs energy

STAR preliminary

Conclusions

- Ridge persists down to the lowest energies.
- Relative away-side correlations decrease with increasing energy.
- ▶ Smooth increase in ridge 2nd order Fourier coefficient.